Extremal k-edge-hamiltonian hypergraphs

نویسندگان

  • Peter Frankl
  • Gyula Y. Katona
چکیده

An r-uniform hypergraph is k-edge-hamiltonian iff it still contains a hamiltonian-chain after deleting any k edges of the hypergraph. What is the minimum number of edges in such a hypergraph? We give lower and upper bounds for this question for several values of r and k. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal P4-stable graphs

Call a graph G k-stable (with respect to some graph H) if, deleting any k edges of G, the remaining graph still contains H as a subgraph. For a fixed H, the minimum number of edges in a k-stable graph is denoted by S(k). We prove general bounds on S(k) and compute the exact value of the function S(k) for H = P4. The main result can be applied to extremal k-edge-hamiltonian hypergraphs.

متن کامل

On Extremal Hypergraphs for Hamiltonian Cycles

We study su cient conditions for Hamiltonian cycles in hypergraphs, and obtain both Turánand Dirac-type results. While the Turán-type result gives an exact threshold for the appearance of a Hamiltonian cycle in a hypergraph depending only on the extremal number of a certain path, the Dirac-type result yields a su cient condition relying solely on the minimum vertex degree.

متن کامل

On hamiltonian chain saturated uniform hypergraphs

We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamiltonian chain but by adding any new edge we create a hamiltonian chain in H. In this paper we ask about the smallest size of a k-uniform hamiltonian chain saturated hypergraph. We present a construction of a family of k-uniform hamiltonian chain saturated hypergraphs with O(nk−1/2) edges.

متن کامل

Turán Problems on Non-Uniform Hypergraphs

A non-uniform hypergraph H = (V,E) consists of a vertex set V and an edge set E ⊆ 2V ; the edges in E are not required to all have the same cardinality. The set of all cardinalities of edges in H is denoted by R(H), the set of edge types. For a fixed hypergraph H, the Turán density π(H) is defined to be limn→∞maxGn hn(Gn), where the maximum is taken over all H-free hypergraphs Gn on n vertices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2000